Design and Control of a Wearable Robot

نویسندگان

  • Younkoo Jeong
  • Yoon Kyong Kim
  • Kyunghwan Kim
  • Jong-Oh Park
چکیده

The concept of wearability will be recognized very important in future robotics as in computer science. There is a strong possibility that wearable robots suggest a new direction for human-robot interaction. In this paper, we propose RoboWear, a wearable robot that a human operator wears on his arm for the purpose of human-robot interaction. The wearable robot can be used to amplify human power, to control a remote robot dexterously, to interact with humans in virtual environment. In this paper, the authors designed RoboWear that has active 7 DOF with suitable device to be worn by a human operator. Based on the anatomical analysis of a human arm and the distribution of multiple DOF over the space, authors designed a wearable robot with a hybrid structure consisting of two parallel manipulators and three separate joints. An operator wearing the robot arm can move around freely, because this robot is designed to have its base supported at the shoulder part of the operator. The total weight of the proposed robot arm is approximately 4 kg. Pneumatic actuators are used to reduce the total weight of the robot, to improve compliance with human motion and to generate high reactive forces. The feasibility of the wearable robot is demonstrated by examining the control performance and by incorporating the wearable robot with virtual environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and development of ShrewdShoe, a smart pressure sensitive wearable platform

     This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...

متن کامل

Conceptual Design of a Gait Rehabilitation Robot

Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...

متن کامل

Task-space Control of Electrically Driven Robots

Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...

متن کامل

Development of a Wearable Robot for Assisting Carpentry Workers

The work of fitting ceiling boards is one of the hardest in carpentry, as it requires large muscular power. Hence there is a need to develop assisting apparatus for such work. In order to use this apparatus anywhere a wearable robot is the most suitable. As the robot must be autonomous and lightweight, a design requiring low power is proposed. A semi-active control method has been developed usi...

متن کامل

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004